POGIL Publications

POGIL Instruction Implemented as a Remote Learning Tool

The Active Methodology POGIL for the Conceptual Understanding of Chemical Equilibrium in High School

Students’ Assessment of Learning Gains with a POGIL-Based Experimental Psychology Laboratory Curriculum

Effects of process-oriented guided inquiry learning on approaches to learning, long-term performance, and online learning outcomes

Implementation of POGIL (Process Oriented Guided Inquiry Learning) in Physiology Lab Practice in Veterinary Medicine

Exploring Power Distribution and its Influence on the Process of Argumentation in a POGIL Biochemistry Classroom     

Modeling Periodic Patterns: Analyzing Chemical Reactions to Determine Trends in Ionization Energy and Electron Affinity​​​​​​​

Using POGILs and Blended Learning to Challenge Preconceptions of Student Ability in Introductory Chemistry​​​​​​​

Students’ Creative Thinking Skills on Heat Phenomena Using POGIL Learning Model

Showcase of NCWIT Academic Alliance Members: Promising Practices Regarding Admission, Curriculum, Pedagogy, TA Selection, and Undergraduate Research

Impact of Process-Oriented Guided Inquiry Learning on Chemistry Students

Making Sense of Sensemaking: Using the Sensemaking Epistemic Game to Investigate Student Discourse During a Collaborative Gas Law Activity

Reflection on the Use of Process Oriented Guided Inquiry Learning in Science-focused English Classes

Adaptation and Facilitation of Small Group Activities in an Online Introductory Biology Class

Mentoring beginning teachers in implementing process-oriented guided inquiry learning: An example of an inquiry-based pedagogical approach to teaching science

High impact educational practices: A review of best practices with illustrative examples

Adapting guided inquiry learning worksheets for emergency remote learning

Process-oriented Guided-inquiry Learning at Jackson State University and Tuskegee University

Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom

POGIL in the Classroom: Using Active Learning Strategies to Re-energize Post-tenure Faculty

Reflection on the Use of Process Oriented Guided Inquiry Learning in Science-focused English Classes

Rethinking Scale: Moving Beyond Numbers to Deep and Lasting Change

A Process-Oriented Guided-Inquiry Learning (POGIL)-Based Curriculum for the Experimental Psychology Laboratory

Non-randomized Trial of POGIL for Improving Students' Academic Achievement in Science Education

Moving a Large-Lecture Organic POGIL Classroom to an Online Setting

Cooperative Learning in Large Sections of Organic Chemistry: Transitioning to POGIL

POGIL Instruction Implemented as a Remote Learning Tool

Rekha Srinivasan, Anjali Patel, Anushka Khanna, Sriram Satyavolu, Yasaswini Iyer, Gautham Chitturu, Sanjana Pandit

Abstract: This study seeks to effectively administer the teaching pedagogy Process Oriented Guided Inquiry Learning (POGIL) in biochemistry courses during a remote learning circumstance to encourage students to establish a solid foundation of knowledge that will support them through their further academic endeavors. Amidst the recent COVID-19 pandemic, many learning institutions have faced an unprecedented transition to remote learning environments. This has created a communication barrier that has challenged collaboration, critical thinking, and demonstration of understanding. Hence, we aimed to equip students with active learning tools to enrich the newfound virtual classroom by encouraging group discussion and ensuring deep learning of introductory biochemistry principles. Along with pre-recorded lectures, we utilized online ZOOM break-out rooms and POGIL style worksheets implemented by a group of upper-class former students of the course. In addition to POGIL, we incorporated collaborative discussion questions that aimed to challenge students to apply concepts they were taught in lectures and worksheets to real-world models. The effectiveness of the active learning tools as complements to the remote learning environment was determined through the analysis of voluntary surveys, conducted at the midpoint and final of each semester.

https://doi.org/10.1096/fasebj.2021.35.S1.03832 

The Active Methodology POGIL for the Conceptual Understanding of Chemical Equilibrium in High School

Luiz Fernando Pereira, Marcia Teixeira Barroso, Fernando Jose Volpi Eusébio Oliveira

Abstract: Chemical equilibrium is alluded to in the literature as one of the most difficult topics to be taught in High School. The inherent nature of the conceptual understanding of the chemical equilibrium has been the focus of the investigation by several researchers, in a wide variety of contexts. We analyzed the results of a pedagogical intervention based on the active teaching methodology POGIL - Process Oriented Guided Inquiry Learning - and its impact on the construction of scientific concepts related to chemical equilibrium, with emphasis on dynamic and reaction aspects. The intervention, characterized as qualitative research, was carried out with students from a public state school in Brazil and mediated by a professional master's student. Participant observation was used as a data collection method and content analysis as an interpretative data analysis method. The results were evaluated through data triangulation among the research collection instruments: POGIL activities, pedagogical tests, learning assessment, questionnaires, and field notes. We analyzed it from the perspective of social-interactionism and found that students became more participative during the application of the POGIL methodology, and most of them were able to improve their understanding of the scientific concepts related to a chemical reaction in the equilibrium state. https://doi.org/10.14483/23464712.16246

Students’ Assessment of Learning Gains with a POGIL-Based Experimental Psychology Laboratory Curriculum.

Rumain, Barbara Schneiderman, Moshe Kaganovskiy, Leon Geliebter, Allan

Abstract: As part of an NSF-funded project, we employed a process-oriented guided-inquiry learning (POGIL) curriculum for the Experimental Psychology Laboratory at Touro College. The Students’ Assessment of Learning Gains (SALG) instrument was administered to students who took the Experimental Psychology Laboratory course with and without using POGIL, to assess the impact of the curriculum, and to determine exactly what aspects of the POGIL curriculum students found most helpful. We examined students’ assessment of the construct of “Active Learning” and found the POGIL group rated various aspects of the lab course (e.g., the POGIL lab activities; the assessments; the way the lab activities, readings, and assignments fit together) as significantly more helpful in aiding “Active Learning” than the non-POGIL group (p = .007). Also, the POGIL group was significantly more likely to agree that as a result of the lab course, they made greater gains in the construct “Process Skills” than did the non-POGIL group (p = .02). In particular, within that construct, they reported higher gains in their ability to think through a problem or argument than the non-POGIL group. Thus, the POGIL group not only thought their curricular activities were more helpful but also that their critical thinking skills improved. Also, following the laboratory course, students using the POGIL materials had a better metacognitive awareness of what “understanding” a concept entails (p = .009). Further, they reported finding the course more challenging (p = .016) than students utilizing a traditional curriculum. https://doi.org/10.1037/stl0000275 

Effects of process-oriented guided inquiry learning on approaches to learning, long-term performance, and online learning outcomes

Noopur Josh, & Siu-Kit Lau

Abstract: Extensive research on process-oriented guided inquiry learning (POGIL) has addressed its impact on student performance but little attention has been devoted to approaches to learning and performance on delayed tests. The use of POGIL in online education must also be explored. This research concerns changes in students’ approaches to learning and their performance on delayed tests after the implementation of POGIL and demonstrates the challenges faced in implementing POGIL online. Various changes that could be made to adapt this methodology to online learning are also outlined. In this quasi-experimental exploratory mixed-method study, two cohorts in an undergraduate architecture program formed the control (n=79) and treatment (n=91) groups. The results of surveys, performance tests, and interviews showed that student performance on delayed tasks was significantly better (t=3.719, p=0.000, d=0.50) following the implementation of POGIL and that there was a higher increase in deep approaches and a lower increase in surface approaches to learning in the treatment group after its application. We also provide recommendations for overcoming these challenges using a POGIL framework with some modifications to its eight typical characteristics.

https://doi.org/10.1080/10494820.2021.1919718

Implementation of POGIL (Process Oriented Guided Inquiry Learning) in Physiology Lab Practice in Veterinary Medicine

David Fernando Balaguera Quinche, Leonardo Gómez Duarte, & Paula Andrea Balaguera
Quinche

Abstract: POGIL pedagogy (Process Oriented Guided Inquiry Learning) was implemented in the practical laboratories of physiology aimed at students of Veterinary Medicine at the National University of Colombia. The objective was to explore an educational alternative based on constructivism different from the traditional methodology composed of “step by step” instructions. As tools to explore this implementation, a thought test was used to assess the critical thinking skills in students, a meta-cognition format to evaluate group work, a structured survey to explore the contribution of POGIL in various academic skills and a “Learning reflection” format to visualize the strengths and weaknesses in theoretical and practical aspects of the laboratories in Physiology. In conclusion, for the students, POGIL promotes memorization and understanding of concepts in Physiology, provides academic strengths, promotes mastery skills in instrumentation in physiology, however, no satisfactory contribution was reflected in the performance of group work in this study.

https://revistas.unc.edu.ar/index.php/revistaadbia/article/download/29806/30610?inline=1 

Exploring Power Distribution and its Influence on the Process of Argumentation in a POGIL Biochemistry Classroom                             

Annabel N. Prince, Wesley B. Pitts and David W. Parkin

Abstract: In this exploratory case study, we consider how students in an undergraduate biochemistry class engaged in the process of argumentation within an inquiry oriented learning environment to investigate a chemical mechanism in a particular part of the tricarboxylic acid cycle. Audio/video recordings of student groups during the mechanism discussion were analyzed in a coordinated fashion using three coding frameworks. The first framework examined students' pattern of argumentation using Toulmin's Argumentation Pattern model, the second coded the interactions for discursive moves using the Inquiry-Oriented Discursive Moves framework, and the final analysis phase used turn-at-talk counts as a framework to explore how power and authority shift between and among participants in the classroom. This research found that argumentation is supported by structures that provide opportunities for discussion, claims, and rebuttals but that the instructor, acting in nuanced ways through expressions of discursive moves, can also promote or inhibit the argumentative process. We provide suggestions for pedagogical moves in inquiry-oriented classrooms.

http://www.jstor.org/stable/44840605 

Modeling Periodic Patterns: Analyzing Chemical Reactions to Determine Trends in Ionization Energy and Electron Affinity

Dusty Carroll

Abstract: Some chemical reactions are versatile and can be used with various topics to provide a valid educational experience. Two such reaction types are those of metals with acids and of halogens with alkali metal halides (Figures I and 2, respectively, pp. 44-45). I have used each of these reaction types for various lab purposes, including modeling single replacement reactions, determining an activity series, and writing net ionic equations as a part of redox chemistry. Both reaction types provide reliable data and typically work as predicted, which adds to their versatility. This article describes how these reactions could fill a laboratory gap in the chemistry curriculum while engaging students in evidence-based reasoning and aligning with the Next Generation Science Standards (NCiSS Lead States 2013; see box, p. 49).

http://ezp.fandm.edu/login?url=https://www.jstor.org/stable/26389304

Using POGILs and Blended Learning to Challenge Preconceptions of Student Ability in Introductory Chemistry

Phillip Boda and Gary Weiser

Abstract: Success for students majoring in STEM (science, technology, engineering, and mathematics) within undergraduate chemistry courses is crucial for retention in science degree programs, especially for students perceived as lacking content knowledge and skills. This study leveraged blended learning structures in a remedial chemistry course combined with a ProcessOriented Guided Inquiry Learning (POGIL) curriculum as a potential intervention. The authors collected two data measures from this course and its nonremedial counterpart during the same semester: (a) pre-/post course Assessment of Basic Chemistry Concepts and (b) final grades. The authors also collected final grades of all students who populated the non remedial course during the following semester and analyzed the data via descriptive statistics, t-tests, and analysis of covariance methods. The data support that students who were in the remedial class exhibited increases in conceptual understandings. This conceptual growth was comparable to the growth of students admitted directly into the nonremedial course. These “remedial” students went on to be 134% more likely to get a satisfactory matriculation grade (>80%) in this same subsequent nonremedial class compared with those directly admitted. Implications for this study emphasize the importance of remedial science course pedagogy and curriculum influencing student success and retention.

http://ezp.fandm.edu/login?url=https://www.jstor.org/stable/26491347

Students’ Creative Thinking Skills on Heat Phenomena Using POGIL Learning Model

Ptariwi, Rinta Dian, Ashadi Ashadi, Sukarmin Sukarmin, Dewanto Harjunowibowo

This research aimed to analyze the improvement of students' creative thinking skills on the topic of heat and its transfer using the POGIL model. The matter concerning heat and its transfer has some characteristics that enable students to carry out practicum and trigger them to develop their higher-order thinking skills. The method used in this research was pre-experimental with one group pretest-posttest design. A total of 32 seventh grade students at SMPN 1 Jaten Karang Anyar, Central Java, were randomly selected as the participants in this research. To measure the increase in students' creative thinking skills, a multiple-choice test had been developed based on the indicators of creative thinking skills. Based on the results of data analysis, the values of N-gain on the indicators consisting of fluency, flexibility, originality, and elaboration were 0.56, 0.60, 0.46, and 0.53, respectively. Those numbers meant that creative thinking was in the medium category. Further analysis shows that, by using the POGIL model on the topic of heat and its transfer learning, students’ creative thinking skills can be increased, especially on the indicators of fluency and flexibility.

http://ejournal.radenintan.ac.id/index.php/al-biruni/article/view/4629/0

Showcase of NCWIT Academic Alliance Members: Promising Practices Regarding Admission, Curriculum, Pedagogy, TA Selection, and Undergraduate Research

Lewis, Colleen M., Olga Glebova, Amir Kamil, Clif Kussmaul, Briana B. Morrison, and Karie A. Siek

Broadening participation in computing touches every aspect of the undergraduate experience. This special session highlights the initiatives undertaken by NCWIT Academic Alliance members who are working to broaden participation in computing. A mix of 3- minute lightning talks, review of resources, and Q&A will provide attendees opportunities to create connections and grapple with implementation issues at their institution. This special session is a reprise of a well-reviewed session from the NCWIT Summit, and will introduce strategies for admission to major, curriculum, pedagogy, teaching assistant selection, and undergraduate research.

https://dl.acm.org/doi/abs/10.1145/3408877.3432587 

Impact of Process-Oriented Guided Inquiry Learning on Chemistry Students

Keller, Aaron Adam

Educating students in science using traditional methods such as lecture and demonstrations is not effective with the majority of students. Alternative methods such as the small-group work method of POGIL (Process Oriented Guided Inquiry Learning) and inquiry-based laboratory work have been shown to be more effective. In this classroom research study these techniques were employed with students in an effort to improve their understanding of science content. In addition, the reason why traditional methods may be less effective is explored through the lens of the work of Jean Piaget and Anton Lawson. Piaget (1972) enumerated several types of reasoning he collectively called 'formal thought'. This formal reasoning may emerge from concrete reasoning during adolescence. Whether it does or not depends in large part on an individual's experiences. The implications for teaching students who are at a concrete stage of cognitive development were explored through data collected regarding science content comprehension, the use of inquiry-based lab activities, and through interviews with students. Finally, prospects for having a direct impact on students' development of formal reasoning are discussed. The results of this study are that the majority of students in a college-preparatory chemistry classroom are in fact concrete thinkers, they require a specific, learning-cycle approach for effective instruction, and the use of such instruction does not in itself contribute directly to their development of formal reasoning abilities. As a result, the study points toward further work to incorporate elements of explicit instruction in formal reasoning skills. Previous research has demonstrated the value of such instruction both in the science classroom and beyond it and that it is in fact possible to aid most but not all students to attain this level of cognitive development.

https://scholarworks.montana.edu/xmlui/handle/1/13670

Making Sense of Sensemaking: Using the Sensemaking Epistemic Game to Investigate Student Discourse During a Collaborative Gas Law Activity

Hunter ,Kevin H., Jon-Marc G. Rodriguez, and Nicole M. Becker 

Beyond students’ ability to manipulate variables and solve problems, chemistry instructors are also interested in students developing a deeper conceptual understanding of chemistry, that is, engaging in the process of sensemaking. The concept of sensemaking transcends problem-solving and focuses on students recognizing a gap in knowledge and working to construct an explanation that resolves this gap, leading them to “make sense” of a concept. Here, we focus on adapting and applying sensemaking as a framework to analyze three groups of students working through a collaborative gas law activity. The activity was designed around the learning cycle to aid students in constructing the ideal gas law using an interactive simulation. For this analysis, we characterized student discourse using the structural components of the sensemaking epistemic game using a deductive coding scheme. Next, we further analyzed students’ epistemic form by assessing features of the activity and student discourse related to sensemaking: whether the question was framed in a real-world context, the extent of student engagement in robust explanation building, and analysis of written scientific explanations. Our work provides further insight regarding the application and use of the sensemaking framework for analyzing students’ problem solving by providing a framework for inferring the depth with which students engage in the process of sensemaking.

https://pubs.rsc.org/en/content/articlehtml/2021/rp/d0rp00290a

Reflection on the Use of Process Oriented Guided Inquiry Learning in Science-focused English Classes

Ellinger, James

The Process Oriented Guided Inquiry Learning (POGIL) framework is a student-centered teaching method that has been used extensively to teach core science content while simultaneously developing process skills such as teamwork, critical thinking, and oral communication. The activities used in this approach follow a learning cycle that begins with exploration of a model, proceeds to concept or term invention, and is followed by application of the newly acquired knowledge. More than 15 years of research has validated the effectiveness of this method for improving student outcomes. The use of POGIL as a mode of instruction in science-focused English courses has not been directly investigated. This paper describes the observations of student engagement with class materials and learning outcomes following introduction of POGIL activities into two courses: a compulsory academic writing course for first year undergraduate students and an elective science-based Content Language and Integrated Learning (CLIL) course taken by first-and second-year undergraduate students at a national university in Japan.

https://www.researchgate.net/publication/334638771_Reflection_on_the_Use_of_Process_Oriented_Guided_Inquiry_Learning_in_Science-focused_English_Classes

Adaptation and Facilitation of Small Group Activities in an Online Introductory Biology Class

Cafferty, Patrick W. 

In spring 2020, the sudden mid-semester closure of my campus in response to the global COVID-19 pandemic necessitated a rapid transition to emergency online learning. Consequently, I adapted the small group activities and facilitation methods of my face-to-face introductory biology class to a fully online format. During small group activities in the face-to-face classroom, students form teams of two or three and complete paper worksheets that are designed to promote dialogue among teammates, while learning assistants and I circulate around the classroom to provide assistance. Evidence suggests these small group activities are a highly effective form of active learning. Here, I describe how I adapted the content of these paper worksheets for use in my learning management system, how students performed collaborative group work together using videoconferencing software, and how learning assistants and I facilitated this group work in a completely online environment during the spring and summer 2020 semesters. I also discuss the limitations and benefits of online group work. Online group activities present many advantages over use of the same activities in the traditional face-to-face classroom including overcoming the many limitations of the physical classroom space. 

https://www.coursesource.org/courses/adaptation-and-facilitation-of-small-group-activities-in-an-online-introductory-biology?fbclid=IwAR1UA-IZakk8NVcpqpp2R74aHU3caoD1eFBpsgvHx0gmvG18_T6L3ssIdFk

Mentoring beginning teachers in implementing process-oriented guided inquiry learning: An example of an inquiry-based pedagogical approach to teaching science

Sheila S. Qureshi, Adam H. Larson, and Venkat Rao Vishnumolakala

This practical guide helps mentors of new science teachers in both developing their own mentoring skills and providing the essential guidance their trainees need as they navigate the rollercoaster of the first years in the classroom. Offering tried-and-tested strategies based on the best research, it covers the knowledge, skills and understanding every mentor needs and offers practical tools such as lesson plans and feedback guides, observation sheets and examples of dialogue with trainees.

Mentoring Science Teachers in the Secondary School: A Practical Guide (ed. Saima Salehjee), 2021, Routledge. ISBN 9780367023126

High impact educational practices: A review of best practices with illustrative examples

Hill, J. C., Jorgensen, C., Horn, M., & Wilson-Ashworth, H.

Process-Oriented Guided-Inquiry Learning (POGIL) is a team-based teaching technique that originated in chemistry.  Its design, implementation, and efficacy rest upon theories of cognition, likely familiar to readers.  In this chapter, we will provide a brief overview of the theoretical foundations of POGIL, data supporting POGIL as an effective pedagogy, a general description of a POGIL classroom, and four specific case studies of POGIL implementation.  The case studies will include a description of chemistry and biology classrooms (areas with lots of POGIL presence) as well as two psychology classrooms (an area in which POGIL is not traditionally used).  Indeed, this chapter will be one of the first published reports of POGIL in a psychology classroom. Retrieved from the Society for the Teaching of Psychology website: http://teachpsych.org/ebooks/highimpacted 

Adapting guided inquiry learning worksheets for emergency remote learning

Iris Howley

Process-oriented guided inquiry learning (POGIL) is a series of learning activities building on student prior knowledge guiding them to construct their own understanding of new concepts in collaborative roles. This paper aims to illustrate how POGIL worksheets can be adapted for low bandwidth and low-computing environments to accommodate the largest swathe of learners in higher education, as was the case during the switch to emergency remote learning in 2020. Information and Learning Sciences, Vol. 121 No. 7/8, pp. 549-557. https://doi.org/10.1108/ILS-04-2020-0086

ISSN: 2398-5348

Process-oriented Guided-inquiry Learning at Jackson State University and Tuskegee University

Naomi F. Campbell, Melissa S. Reeves, Marilyn Tourné, M. Francis Bridges
Broadening Participation in STEM

Process-oriented guided-inquiry learning (POGIL) is a student-centered instructional strategy to actively engage students in the classroom in promoting content mastery, critical thinking, and process skills. The students organize into groups of three to four, and each group member works collaboratively to construct their understanding as they proceed through the embedded learning cycle in the POGIL activity. Each group member has a specific role and actively engages in the learning process. The roles rotate periodically, and each student has the opportunity to develop essential process skills, such as leadership skills, oral and written communication skills, team-building skills, and information-processing skills. The student groups are self-managed, and the instructor serves as a facilitator of student learning. A POGIL activity typically contains a model that the students deconstruct using a series of guided, exploratory questions. The students develop concepts (concept invention) as the group members reach a valid, consensus conclusion. The students apply their concepts to new problems completing the learning cycle. The authors implemented POGIL instruction in several chemistry courses at Jackson State University and Tuskegee University. They share their initial findings, experiences, and insights gained using a new instructional strategy.

Diversity in Higher Education, Vol. 22, Emerald Publishing Limited, pp. 265-289. https://doi.org/10.1108/S1479-364420190000022012

Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom

Louis Deslauriers, Logan S. McCarty, Kelly Miller, Kristina Callaghan, and Greg Kestin

We compared students’ self-reported perception of learning with their actual learning under controlled conditions in large enrollment introductory college physics courses taught using 1) active instruction (following best practices in the discipline) and 2) passive instruction (lectures by experienced and highly rated instructors). Both groups received identical class content and handouts, students were randomly assigned, and the instructor made no effort to persuade students of the benefit of either method. Students in active classrooms learned more (as would be expected based on prior research), but their perception of learning, while positive, was lower than that of their peers in passive environments. This suggests that attempts to evaluate instruction based on students’ perceptions of learning could inadvertently promote inferior (passive) pedagogical methods. For instance, a superstar lecturer could create such a positive feeling of learning that students would choose those lectures over active learning. Most importantly, these results suggest that when students experience the increased cognitive effort associated with active learning, they initially take that effort to signify poorer learning. That disconnect may have a detrimental effect on students’ motivation, engagement, and ability to self-regulate their own learning. Although students can, on their own, discover the increased value of being actively engaged during a semester-long course, their learning may be impaired during the initial part of the course. We discuss strategies that instructors can use, early in the semester, to improve students’ response to being actively engaged in the classroom.

Proceedings of the National Academy of Sciences. 116. 201821936. 10.1073/pnas.1821936116.

POGIL in the Classroom: Using Active Learning Strategies to Re-energize Post-tenure Faculty

Tracey Arnold Murray, Paula Deferico, Christine Anderson and Leigh Johnson

Abstract: Maintaining post-tenure faculty’s enthusiasm for teaching can be difficult for any number of reasons; the most common are comfort with existing teaching methods and a lack of time. However, renewing tenured faculty’s excitement about teaching can be very rewarding, especially for the students in their classrooms. One way to motivate faculty to invest in teaching is to turn the focus from faculty-centered to student-centered learning. As faculty at Capital were getting more information about student learning and achievement gaps in their classrooms, an increasing number of colleagues became interested in using active learning strategies. However, they faced some barriers, including a lack of experience with active learning and the absence of funding to travel to POGIL workshops. To combat these barriers, Capital’s provost agreed to provide the necessary funding for five faculty to travel to a workshop to learn how to implement POGIL in their classrooms. Each post-tenure faculty member who attended the workshop has implemented more POGIL activities in her classes. As a result, we noticed at Capital that as more people on campus begin to implement active learning, the students start to experience POGIL in more than one class. As students repeatedly encounter the POGIL method, a decrease in student resistance and an increase in their preference for classes taught using active methods has been noticed at Capital Univ. We have also observed an increase in our own focus on and excitement about teaching that has reinvigorated our classrooms and our feelings about teaching.

https://www.aacu.org/peerreview/2019/fall/CapitalUniv 

Reflection on the Use of Process Oriented Guided Inquiry Learning in Science-focused English Classes

James Ellinger

Abstract: The Process Oriented Guided Inquiry Learning (POGIL) framework is a student-centered teaching method that has been used extensively to teach core science content while simultaneously developing process skills such as teamwork, critical thinking, and oral communication. The activities used in this approach follow a learning cycle that begins with exploration of a model, proceeds to concept or term invention, and is followed by application of the newly acquired knowledge. More than 15 years of research has validated the effectiveness of this method for improving student outcomes. The use of POGIL as a mode of instruction in science-focused English courses has not been directly investigated. This paper describes the observations of student engagement with class materials and learning outcomes following introduction of POGIL activities into two courses: a compulsory academic writing course for first year undergraduate students and an elective science-based Content Language and Integrated Learning (CLIL) course taken by first-and second-year undergraduate students at a national university in Japan.

https://www.researchgate.net/publication/334638771_Reflection_on_the_Use_of_Process_Oriented_Guided_Inquiry_Learning_in_Science-focused_English_Classes

Rethinking Scale: Moving Beyond Numbers to Deep and Lasting Change

Cynthia E. Coburn

Abstract: The issue of “scale” is a key challenge for school reform, yet it remains undertheorized in the literature. Definitions of scale have traditionally restricted its scope, focusing on the expanding number of schools reached by a reform. Such definitions mask the complex challenges of reaching out broadly while simultaneously cultivating the depth of change necessary to support and sustain consequential change. This article draws on a review of theoretical and empirical literature on scale, relevant research on reform implementation, and original research to synthesize and articulate a more multidimensional conceptualization. I develop a conception of scale that has four interrelated dimensions: depth, sustainability, spread, and shift in reform ownership. I then suggest implications of this conceptualization for reform strategy and research design.

https://doi.org/10.3102/0013189X032006003

A Process-Oriented Guided-Inquiry Learning (POGIL)-Based Curriculum for the Experimental Psychology Laboratory

Barbara Rumain and Allan Geliebter

Abstract: We implemented NSF-funded computerized Experimental Psychology Laboratories at Touro College and incorporated process-oriented guided-inquiry learning (POGIL). We designed POGIL modules for the labs and conducted workshops for faculty on the implementation of the guided-inquiry approach, including learning teams. Data were collected from students who took experimental psychology with and without using POGIL, to assess the impact of the curriculum materials. Achievement was measured with (a) selected items from the Major Field Achievement Tests (MFAT) and (b) our own assessment instrument. Results indicated that students using the POGIL materials performed significantly better on both achievement tests than students not using them. This is the first demonstration that POGIL led to higher achievement than non-POGIL instruction for experimental psychology. These results are consistent with previous POGIL findings in the field of chemistry.

https://doi.org/10.1177/1475725720905973

Non-randomized Trial of POGIL for Improving Students' Academic Achievement in Science Education

David Agwu Udu, Nmadu Saba John, Chidebe Chijioke Uwaleke, Okechineke Benjamin Chukwunonso, Anudu Adaora Phina, Precious Chisom Attamah

Abstract: This study investigated the effectiveness of process-oriented guided-inquiry learning (POGIL) pedagogy in improving male and female undergraduates’ academic achievement in science education, in comparison with the conventional lecture method. A non-equivalent, control group quasi-experimental design was used to investigate male and female undergraduates' achievement in science education. Data were collected from 85 second-year science education undergraduates and analyzed using mean, standard deviation, and analysis of covariance. The results show that POGIL pedagogy, as opposed to lecture pedagogy, resulted in improved academic achievement in science education (F (1,82) = 26.66, P = .000, ˂ .05). The data provided evidence to suggest that undergraduates that learned by the POGIL method had a greater grasp of content knowledge than their counterpart that learned by the lecture approach, as evidenced by higher mean achievement scores for POGIL undergraduates. There was no significant influence of gender on the undergraduates’ achievement in the POGIL (F (1,37) = .805, P = .375, ˃ .05). The findings of the study have implications for the restructuring of science education teaching environments in the university system by de-emphasizing and discouraging the use of teacher-centered pedagogies and promoting the use of the current student-centered pedagogies for enhancing the undergraduates’ academic achievement. The researchers, therefore, recommend that lecturers should organize science educational environments to support active learning strategies for improved undergraduates’ academic achievement in science education.

DOI: 10.13189/ujer.2020.080927 at http://www.hrpub.org/download/20200830/UJER27-19516565.pdf

Moving a Large-Lecture Organic POGIL Classroom to an Online Setting

Gil Reynders and Suzanne M. Ruder

Abstract: As part of the response to the COVID-19 pandemic in the spring 2020 semester, a large-lecture organic POGIL classroom was moved completely online. Normally the course involved daily group work that was facilitated by undergraduate teaching assistants, and these TAs would also assess student process skills such as critical thinking, information processing, teamwork, and communication. After the move to online instruction, the format of the course dramatically changed. In this communication, we describe the ways in which we attempted to maintain the basic structure of the POGIL classroom in a virtual environment. Changes to the course included the implementation of several online structures to provide students with opportunities to learn in ways that best fit their individual home situations. On the basis of survey data from the students and teaching assistants, we discuss the challenges that these two groups faced, including motivation, organization, and technological issues. We also describe how an online environment requires TAs to play a more active role in encouraging crosstalk between students than a face-to-face setting. Finally, we provide insights into how instructors can address these concerns in future online learning environments, including the use of synchronous and asynchronous activities and changes in assessment practices.

https://doi.org/10.1021/acs.jchemed.0c00615

Cooperative Learning in Large Sections of Organic Chemistry: Transitioning to POGIL

Dorian A. Canelas, Jennifer L. Hill, and Robert G. Carden

Abstract: A brief review of recent literature describing cooperative learning in organic chemistry, and the use of POGIL in particular, is presented. A case study of the steps one instructor took to implement the POGIL pedagogy will be outlined along with instructor reflections on the overall experience. Examples of outcomes from experiments comparing cooperative learning sections to lecture sections will be reviewed and expanded. Differences in learning between the participants in the experimental (cooperative learning) and control (lecture format) groups have been found in three key areas: (1) psychological affect variables, (2) development of transferable skills, and (3) self-reported gains in key organic chemistry content areas. Comparison of the two groups in terms of their elucidation of molecular structures from spectroscopy data will be discussed. When compared to the lecture group, students in the cooperative learning group self-reported higher gains in skills, and this was confirmed using a direct measure: performance on free response spectroscopy problems on the final exam. Indeed, the cooperative learning group scored higher than the lecture group on these spectroscopy free response exam problems, and this difference between the scores of the two groups was statistically significant.

DOI: 10.1021/bk-2019-1336.ch012  at https://pubs.acs.org/doi/pdf/10.1021/bk-2019-1336.ch012