Section 5.2

The Algebra of Functions

Model 1 Operations of Functions

Given Functions	$\mathbf{x}=-\mathbf{5}$	$\mathbf{x}=\mathbf{0}$
$f(x)=x+1$	$f(-5)=-5+1=-4$	$f(0)=1$
$g(x)=x^{2}-5$	$g(-5)=(-5)^{2}-5=20$	$g(0)=-5$
$h(x)=x^{2}-1$	$h(-5)=(-5)^{2}-1=24$	$h(0)=-1$

Addition	
$\begin{aligned} & (f+g)(-5)=-4+20=16 \\ & (g+h)(-5)=20+24=44 \end{aligned}$	$\begin{aligned} & (f+g)(x)=(x+1)+\left(x^{2}-5\right)=x^{2}+x-4 \\ & (g+h)(x)=\left(x^{2}-5\right)+\left(x^{2}-1\right)=2 x^{2}-6 \end{aligned}$
Subtraction	
$\begin{aligned} & (f-g)(0)=1-(-5)=6 \\ & (h-f)(0)=-1-(1)=-2 \end{aligned}$	$\begin{aligned} & (f-g)(x)=(x+1)-\left(x^{2}-5\right)=-x^{2}+x+6 \\ & (h-f)(x)=\left(x^{2}-1\right)-(x+1)=x^{2}-x-2 \end{aligned}$
Multiplication	
$\begin{gathered} (f \cdot g)(-5)=-4 \cdot 20=-80 \\ (h \cdot g)(0)=-1 \cdot-5=5 \end{gathered}$	$\begin{aligned} & (f \cdot g)(x)=(x+1)\left(x^{2}-5\right)=x^{3}+x^{2}-5 x-5 \\ & (h \cdot f)(x)=\left(x^{2}-1\right)(x+1)=x^{3}+x^{2}-x-1 \end{aligned}$
Division	
$\begin{aligned} & \left(\frac{f}{g}\right)(-5)=\frac{-4}{20}=\frac{-1}{5} \\ & \left(\frac{g}{f}\right)(-5)=\frac{20}{-4}=-5 \end{aligned}$	$\begin{gathered} \left(\frac{f}{g}\right)(x)=\frac{x+1}{x^{2}-5} \\ \left(\frac{h}{f}\right)(x)=\frac{x^{2}-1}{x+1}=\frac{(x+1)(x-1)}{x+1}=x-1 \end{gathered}$

1. Use the information in Model 1 to answer the following:
a) What is $f(x)$? \qquad
b) What is the value of $f(0)$? \qquad
c) What is $g(x)$? \qquad
d) What is the value of $g(0)$? \qquad
e) What is the value of $(f-g)(0)$? \qquad
f) Write an expression for $(f-g)(0)$ in terms of $f(0)$ and $g(0)$.
g) In view of your answer above, find the value of $(g-f)(0)$.
2. Locate the expression $(g+h)(-5)$ in Model 1 .
a) What is the value of $(g+h)(-5)$? \qquad
b) Explain where the 20 and 24 come from in the addition.
c) What is the simplified expression of $(g+h)(x)$ in Model 1 ?
d) Use the simplified expression above to confirm your answer to part a.
3. Locate the expression $\left(\frac{f}{g}\right)(-5)$ in Model 1.
a) What is the value of $\left(\frac{f}{g}\right)(-5)$?
b) What is the relationship between the values $\left(\frac{f}{g}\right)(-5)$ and $\left(\frac{g}{f}\right)(-5)$?
c) Find the expression for $\left(\frac{g}{f}\right)(x)$ using the functions in Model 1.
4. Describe two different ways to find the value of $(h \cdot g)(0)$.
5. Find the following values using the functions from Model 1.
a) $(f+g)(0)$
b) $(f \cdot h)(-5)$
c) $(f-h)(0)$
d) $\left(\frac{g}{h}\right)(0)$
e) $(f-g)(2)$
6. Find the simplified expressions for the following using the functions from Model 1.
a) $(f+h)(x)$
b) $(g-h)(x)$
c) $(f \cdot h)(x)$
d) $\left(\frac{f}{h}\right)(x)$
7. In summary of the operations presented in Model 1, write a general expression in terms of $f(x)$ and $g(x)$ for each of the following:

$$
\begin{aligned}
& (f+g)(x)= \\
& (f-g)(x)= \\
& (f \cdot g)(x)= \\
& \left(\frac{f}{g}\right)(x)=
\end{aligned}
$$

Model 2 Finding Domains with Function Operations

For all graphs on this page, source: Kayla Heffernan/Victoria Causer Graphing tool copyright © by Desmos Studio, PBC. Reprinted by permission.
8. Which original function, $f(x)$ or $g(x)$, has a restricted domain? Explain the reason for the restriction.
9. Is the domain for the function operations similar to the domain of $f(x)$ or the domain of $g(x)$?
10. Which of the four operations has a different domain than the others? Describe the difference and explain why.
11. Discuss as a team, and explain how can a graph help to verify the domain.
12. Now consider the following six functions and graphs.

Function	Graph	Function	Graph
$\begin{gathered} f(x)=\frac{1}{x} \\ \text { D: }(-\infty, 0) \cup(0, \infty) \end{gathered}$		$\begin{gathered} g(x)=\sqrt{x+3} \\ \text { D: }[-3, \infty) \end{gathered}$	
$\begin{aligned} & (f+g)(x) \\ & \text { D: } \\ & \hline \end{aligned}$		$\begin{aligned} & \quad(f-g)(x) \\ & \mathrm{D}: \\ & \hline \end{aligned}$	
$\mathrm{D}: \underline{(f g)(x)}$		D: $\left(\frac{f}{g}\right)(x)$	

a) What value is excluded in the domain of $f(x)$ and why?
b) What values are excluded from the domain of $g(x)$ and why?
13. Based on the graph in Question 12, what values appear to be excluded from the domain of $(f+g)(x)$?
14. Find $(f+g)(x)$ using the functions from Question 12 and write the domain.
15. Which two other function operations have the same domain as $(f+g)(x)$? Present your team's justification.
16. The domains for $(f+g)(x),(f-g)(x)$, and $(f g)(x)$ will always be the same. These domains come from the intersection of the domain of $f(x)$ and $g(x)$. Fill in the missing domains for $(f+g)(x),(f-g)(x)$, and $(f g)(x)$ in Question 12.
17. The domain for $\left(\frac{f}{g}\right)(x)$ also comes from the intersection; however, we must consider additional restrictions for what makes the denominator function zero.
a) In the expression $\left(\frac{f}{g}\right)(x)$, what is the denominator function? \qquad
b) Find $\left(\frac{f}{g}\right)(x)$ using the functions from Question 12 and write the domain.
c) What additional value is excluded from the domain for $\left(\frac{f}{g}\right)(x)$?
d) Fill in the missing domain in the table for $\left(\frac{f}{g}\right)(x)$ in Question 12.
18. Given $f(x)=\frac{-3}{x-1}$ and $g(x)=\frac{3}{5-x}$, find:
a) $(f+g)(x)$ and its domain
b) $(f-g)(x)$ and its domain
c) $(f \cdot g)(x)$ and its domain
d) $\left(\frac{f}{g}\right)(x)$ and its domain

Exercises

Let $f(x)=x^{2}-9, g(x)=x-3$, and $h(x)=2 x$. Find each of the following:

1. $(f+g)(2)$
2. $(f-g)(-3)$
3. $(f-h)(0)$
4. $(f h)(1)$
5. $\left(\frac{g}{h}\right)(6)$
6. $(h+g)\left(-\frac{1}{4}\right)$
7. $(g+f)(x)$
8. $(f-h)(x)$
9. $(f g)(x)$
10. $\left(\frac{f}{g}\right)(x)$
11. $(g+h)(x)$
12. $(g h)(x)$

Let $f(x)=\frac{3}{x-4}$ and $g(x)=\frac{1}{x^{2}-16}$. Find each of the following:
13. $(f+g)(x)$ and its domain.
14. $(f-g)(x)$ and its domain.
15. $(f g)(x)$ and its domain.
16. $\left(\frac{f}{g}\right)(x)$ and its domain.

Let $f(x)=\sqrt{x}$ and $g(x)=\sqrt{x-1}$. Find each of the following. Be sure to rationalize all denominators.
17. $(f+g)(x)$ and its domain.
18. $(f-g)(x)$ and its domain.
19. $(f g)(x)$ and its domain.
20. $\left(\frac{f}{g}\right)(x)$ and its domain.
21. $\left(\frac{g}{f}\right)(x)$ and its domain.

